RDX degradation using an integrated Fe(0)-microbial treatment approach.

نویسندگان

  • M J Wildman
  • P J Alvarez
چکیده

RDX is a persistent and highly mobile groundwater contaminant that represents a major remediation challenge at numerous munitions manufacturing and load-assemblage-package facilities. This work presents proof of concept that permeable reactive iron barriers might be a viable approach to intercept and degrade RDX plumes. Specifically, RDX was rapidly reduced in aquifier microcosms amended with Fe(0) powder, and in flow-through columns packed with steel wool. The rate and extent of RDX degradation in microcosms was enhanced by anaerobic bacteria that feed on cathodic hydrogen (i.e., H2 produced during anaerobic Fe(0) corrosion by water). Apparently, the hydrogenotrophic consortium that exploits Fe(0) corrosion as a metabolic niche participated in the further degradation of heterocyclic intermediates produced by the reaction of RDX with Fe(0). Reductive treatment of RDX with Fe(0) also reduced its toxicity to microorganisms and enhanced its subsequent biodegradability under either anaerobic or anaerobic conditions. Therefore, a combined or sequential Fe(0)-biological treatment approach might improve treatment efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pilot-scale treatment of RDX-contaminated soil with zerovalent iron.

Soils in Technical Area 16 at Los Alamos National Laboratory (LANL) are severely contaminated from past explosives testing and research. Our objective was to conduct laboratory and pilot-scale experiments to determine if zerovalent iron (Fe(0)) could effectively transform RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in two LANL soils that differed in physicochemical properties (Soils A and B)....

متن کامل

Enhanced Degradation of RDX by Shewanella putrefaciens CN32 and Iron Bearing Soil Minerals

We demonstrated that reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive, RDX) can be enhanced by bio-reduced iron-bearing soil minerals (IBSMs) using Shewanella putrefaciens CN32 (CN32). The highest rate constant was obtained by bio-reduced lepidocrocite (0.1811 h-1) during RDX degradation, followed by magnetite (0.1700 h-1), green rust (0.0757 h-1), he...

متن کامل

Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary sourc...

متن کامل

Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments.

In situ chemical reduction of clays and iron oxides in subsurface environments is an emerging technology for treatment of contaminated groundwater. Our objective was to determine the efficacy of dithionite-reduced sediments from the perched Pantex Aquifer (Amarillo, TX) to abiotically degrade the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7...

متن کامل

Hexahydro-1,3,5-trinitro-1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures.

Soil microcosms were used to evaluate the potential benefits of an integrated microbial-Fe0 system to treat groundwater contamination by RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Microcosms amended with both Fe0 filings and municipal anaerobic sludge mineralized RDX faster and to a greater extent than separate treatments, with up to 51% 14CO2 recovery after 77 d. The nitroso byproducts 1,3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water science and technology : a journal of the International Association on Water Pollution Research

دوره 43 2  شماره 

صفحات  -

تاریخ انتشار 2001